

Contents:

	Usage
	Installation

	Usage
	Configuring the middleware

	Constructing the X-EPDB header

	Connecting the client

	Backends
	Base64

	Fernet

	JWT

	Troubleshooting

	API
	Middleware
	EPDBServe

	Backends
	Base64Backend

	FernetBackend

	JWTBackend

	EPDBBackend

	Exceptions
	EPDBException

	Development
	Style checks and testing
	Style
	Conventions

	Tools

	Adding dependencies

	Publishing a new release

	Changelog
	v1.1.0
	Cleanup and more tooling

	v1.0.0
	Initial release

falcon-epdb

[image: Build version] [https://badge.fury.io/py/falcon-epdb] [image: Source code] [https://github.com/jcwilson/falcon-epdb] [image: Build status] [https://travis-ci.org/jcwilson/falcon-epdb] [image: Coverage status] [https://coveralls.io/github/jcwilson/falcon-epdb] [image: Documentation status] [https://falcon-epdb.readthedocs.io/en/latest] [image: Coverage status] [https://opensource.org/licenses/BSD-3-Clause] [image: Black code formatter] [https://pypi.org/project/black/]

A Falcon middleware [https://falcon.readthedocs.io/en/stable/api/middleware.html] that wraps the excellent epdb [https://pypi.org/project/epdb/] tool and allows one to connect to a running Falcon app and use interactive debugging to step through the code.

Better documentation can be found at readthedocs [https://falcon-epdb.readthedocs.io].

Source code can be found on GitHub at jcwilson/falcon-epdb [https://github.com/jcwilson/falcon-epdb].

Installation

If you are only planning on debugging in a development environment where access to your service is restricted to you or trusted partners, you may find the Base64 backend sufficient to your purposes. You can just install the library as you would any Python library.

requirements.txt

falcon-epdb

pip

pip install falcon-epdb

poetry

poetry add falcon-epdb

However, if you need a little more security, you can use one of the other authenticated backends (Fernet, JWT). Choose the one that best fits your use case and install it as a Python extra [https://www.python.org/dev/peps/pep-0508/#extras].

requirements.txt

falcon-epdb[fernet]

pip

pip install falcon-epdb[fernet, jwt]

poetry

poetry add falcon-epdb[jwt]

Usage

This library adds a middleware to your Falcon API stack, and as such will run for all requests, save those excluded by exempt_methods provided to the EPDBServer constructor. If it detects a well-formed (and possibly authenticated) X-EPDB header on the request it will start the epdb [https://pypi.org/project/epdb/] server on the configured port and block until it establishes a connection from an epdb [https://pypi.org/project/epdb/] client, at which point processing continues but under the control of the remote debugging session.

Subsequent requests with an acceptable header will reuse the client connection and automatically drop into the remote debugging session again.

Configuring the middleware

The EPDBServe middleware accepts a handful of parameters. The most important are the backend and serve_options parameters. The backend determines how a request is examined for the “secret knock” to start the remote debugging server. The included implementations assume a well-formed X-EPDB header, but nothing precludes you from sub-classing EPDBBackend and implementing your own.

The serve_options are options that are passed through to the epdb.serve() call. See Backends for details on how to add this middleware to your API.

Constructing the X-EPDB header

The content of the header is as follows:

{
 "epdb": {}
}

Depending on the backend in use, one should encode this content into the appropriate header-safe value. Then append this value to the name of the backend.

X-EPDB: Base64 eyJlcGRiIjoge319

Connecting the client

Example code for connecting to the waiting port:

import epdb

edpb.connect(host=<host>, port=9000)

Backends

Base64

Server side configuration

epdb_middleware = EPDBServe(
 backend=Base64Backend(),
 serve_options={'port': 9000})
api = falcon.API(middleware=[epdb_middleware])

Crafting an appropriate header

import base64
import json

header_content = base64.b64encode(json.dumps({'epdb': {}}).encode()).decode()
header_value = 'Base64 {}'.format(header_content)

Fernet

Server side configuration

fernet_key = Fernet.generate_key() # The shared key
epdb_middleware = EPDBServe(
 backend=FernetBackend(key=fernet_key),
 serve_options={'port': 9000})
api = falcon.API(middleware=[epdb_middleware])

Crafting an appropriate header

import json
from cryptography.fernet import Fernet

f = Fernet(<fernet_key>) # Key configured on the server
header_content = f.encrypt(json.dumps({'epdb': {}}).encode()).decode()
header_value = 'Fernet {}'.format(header_content)

JWT

Server side configuration

jwt_key = uuid.uuid4().hex # The shared key
epdb_middleware = EPDBServe(
 backend=JWTBackend(key=jwt_key),
 serve_options={'port': 9000})
api = falcon.API(middleware=[epdb_middleware])

Crafting an appropriate header

import jwt

header_content = jwt.encode({'epdb': {}}, <jwt_key>, algorithm='HS256').decode()
header_value = 'JWT {}'.format(header_content)

Troubleshooting

You must be sure to allow access to the configured port on your host. Be sure to check your security groups and firewall rules.

Configure your web app to only run one worker process. If you have multiple workers, only the first one will be able to serve on the configured port. If this is not possible you will have to take steps to ensure that all requests that wish to use the remote debugging port are routed to the same worker. This will depend heavily on your HTTP stack and is beyond the scope of this documentation.

Be sure to up your request timeout limit to something on the order of minutes so that the HTTP server doesn’t close your request connection or kill your worker process while you’re debugging.

You may need to provide the HTTP- prefix on your X-EPDB header for it to be handled correctly. So instead of sending X-EPDB, you would send HTTP-X-EPDB.

API

Middleware

EPDBServe

	
class falcon_epdb.EPDBServe(backend, exempt_methods=('OPTIONS',), serve_options=None)

	A middleware to enable remote debuging via an epdb [https://pypi.org/project/epdb/] server.

	Parameters

	
	backend (EPDBBackend) – An instance of the class that will validate and decode the X-EPDB header

	exempt_methods (iterable of strings) – HTTP methods which will be ignored by this middleware

	serve_options (dictionary) – Parameters passed-through to epdb.serve()

A client may include a special X-EPDB header containing an appropriately formed payload.
If they do, the header will be passed to the configured backend for processing. If the
payload passes authentication and meets the content requirements, the app will be begin
listening for epdb [https://pypi.org/project/epdb/] client connections.

A well-formed header has content simply of the form:

{
 "epdb": {}
}

The encoding and encryption of this payload is determined by the EPDBBackend
provided to the middleware.

	
process_request(req, resp)

	Check for a well-formed X-EPDB header and if present activate the epdb [https://pypi.org/project/epdb/] server.

	Parameters

	
	req – The Falcon request object

	resp – The Falcon response object (unused)

This will block, waiting for an epdb [https://pypi.org/project/epdb/] client connection, the first time a valid
header is received. Once the client is connected, subsequent passes will simply activate
the connected client and drop it into the epdb [https://pypi.org/project/epdb/] shell.

The header processing is delegated to the configured EPDBBackend.

Backends

Base64Backend

	
class falcon_epdb.Base64Backend

	A simple unauthenticated backend for local development.

	
decode_header_value(epdb_header)

	Pull the encrypted data out of the header, if present.

	Parameters

	epdb_header (string) – The content of the X-EPDB header.

	Returns

	The decoded header payload

	Return type

	dictionary

	Raises

	EPDBException

It expects epdb_header to have the Base64 prefix.

FernetBackend

	
class falcon_epdb.FernetBackend(key)

	A Python cryptography-based backend that supports a pre-shared key (ie. password) protocol.

	Parameters

	key (bytes) – The fernet key used to encrypt the header content

Note

To use this backend, one must install the cryptography package. The easiest
way to do this is to specify the [fernet] extra when adding the falcon-epdb
dependency to your project.

requirements.txt

falcon-epdb[fernet]

	
decode_header_value(epdb_header)

	Pull the encrypted data out of the header, if present.

	Parameters

	epdb_header (string) – The content of the X-EPDB header.

	Returns

	The decoded and decrypted header payload

	Return type

	dictionary

	Raises

	EPDBException

It expects epdb_header to have the Fernet prefix.

JWTBackend

	
class falcon_epdb.JWTBackend(key)

	A JWT-based backend that supports a pre-shared key (ie. password) protocol.

	Parameters

	key (bytes) – The JWT key used to encrypt the header content

Note

To use this backend, one must install the PyJWT package. The easiest
way to do this is to specify the [jwt] extra when adding the falcon-epdb
dependency to your project.

requirements.txt

falcon-epdb[jwt]

	
decode_header_value(epdb_header)

	Pull the encrypted data out of the header, if present.

	Parameters

	epdb_header (string) – The content of the X-EPDB header.

	Returns

	The decoded and decrypted header payload

	Return type

	dictionary

	Raises

	EPDBException

It expects epdb_header to have the JWT prefix.

EPDBBackend

	
class falcon_epdb.EPDBBackend

	The abstract base class defining the header-processing backend interface.

An inheriting subclass must define decode_header_value(), but may define other methods
if necessary. This class is structured to provide a balance of convenience and flexibility.

	
decode_header_value(epdb_header)

	Process the X-EPDB header content.

	Parameters

	epdb_header (string) – The content of the X-EPDB header

	Returns

	The decoded and decrypted header payload

	Return type

	dictionary

This does not need to do any content validation, as that is handled in
validate_header_content().

	
get_header_data(req)

	Process a request and return the contents of a conforming payload.

	Parameters

	req (Request) – The Falcon request object

	Returns

	The paylod content or None

	Return type

	dictionary or None

This implementation assumes that the payload is present on the X-EPDB header, but
subclasses may override this method if their use-case demands it.

If the request does not appear to be attempting begin a debugging session, this will
return None.

	
static validate_header_content(header_content)

	Ensure that the decoded X-EPDB header content is well-formed.

	Parameters

	header_content (dictionary) – The decoded X-EPDB header content

	Returns

	The value of the epdb [https://pypi.org/project/epdb/] key

	Return type

	dictionary

	Raises

	EPDBException

header_content must be of the form:

{
 "epdb": {}
}

Exceptions

EPDBException

	
exception falcon_epdb.EPDBException

	Raised when an error occurs during the processing of an X-EPDB header.

Development

Issues and pull requests are welcome at GitHub [https://github.com/jcwilson/falcon-epdb]. Please be sure to add or update the documentation appropriately along with your code changes.

Style checks and testing

All pull requests will be validated with Travis CI [https://travis-ci.org/jcwilson/falcon-epdb], but you may run the tests locally with tox [https://tox.readthedocs.io] and/or poetry [https://poetry.eustace.io/]. We use tox to wrap poetry commands in our Travis CI configuration.

Run the entire suite of tests:

Using tox

tox

Or just run one off tests:

Using poetry

Install the project dependencies, including dev-dependencies into a
poetry-managed virtual environment.
poetry install -E jwt -E fernet

Run the individual style checks as needed in the virtual environment
poetry run black --check falcon_epdb
poetry run flake8 falcon_epdb tests
poetry run pylint falcon_epdb
poetry run pydocstyle falcon_epdb tests

Run the unit tests in the virtual environment
poetry run pytest -v tests

Build the docs and find them in docs/_build
poetry run sphinx-build -b html docs docs/_build

Style

Conventions

No new-lines in paragraphs in *.rst documents to manage line-length. It’s too much trouble to add line breaks manually at some arbitrary cut-off point. Your editor should word wrap for you. However, doc-comments in the code should respect the Python file line length.

Tools

This project uses several tools to ensure quality and consistency.

black

This is an opinionated code formatter [https://black.readthedocs.io/en/stable]. This is the first thing we check against, as this potentially modifies the code and we wish that the new code remains compliant with the subsequent checks.

While we use it to verify compliant formatting, it is recommended that you install it as a global tool on your own system and apply the auto-formatting prior to commiting your code. It already has out-of-the-box integrations with several popular editors.

If you do not wish to install globally on your system, you can still install it in the poetry-managed virtual environment:

Install black unmanaged by poetry in order to get around
impossible version requirements.
poetry run pip install black

Run the formatter; will modify files
poetry run black falcon_epdb tests

flake8

This is the popular PEP8 tool with a few more improvements.

pylint

The comprehensive, fairly opinionated code quality tool. It generates a score (on a scale of 0 to 10) based on a multitude of criteria. This project has a minimal list of disabled rules, which are disabled to support Python 2.7 support.

pydocstyle

Even documentation needs to set a high bar. Much of the inline doc-comments become part of the auto-generated API documents. This ensures consistency of form as well as of content.

Adding dependencies

Use the poetry add command to add dependencies to the pyproject.toml file.

Using poetry add

poetry add cryptography
poetry add --dev coveralls

Note

If you add a non-dev dependency, be sure to also add it to requirement-docs.txt.

Publishing a new release

The project is configured to publish a release anytime a tag is pushed to the GitHub repository and the build succeeds. The tagging convention is v<Major>.<minor>.<patch>, and it should follow semver [https://semver.org/] conventions. One can bump the version using the poetry version [https://poetry.eustace.io/docs/cli/#version] command.

When creating a release, ensure the following:

	The documentation is up to date with the new changes.

	The changes have been noted in the CHANGELOG.rst.

	The build “badges” are all passing. The readthedocs one seems somewhat finicky these days.

	The version has been incremented accordingly.

Changelog

v1.1.0

Cleanup and more tooling

	Removed the __version__ attribute. It’s unnecessary and adds fragile manual maintenance overhead.

	This would normally be considered a breaking change, but I’m pretty sure no one’s using this yet, much less depending on that attribute being present

	Added the black code formatter to the development stack

	Applied it to both code and tests

	Mostly just converted all strings to double-quotes

	Removed pylint-quotes now that black has been added

	Added source code link and badge to README.rst for easier navigation from readthedocs.io

	Switched pip_install to false in readthedocs.io

	Added documentation around the style-enforcement tools and other conventions

	Cleaned up some documentation

	Added several project url attributes to pyproject.toml in the hopes that poetry and PyPI will display the relative links on the project page.

v1.0.0

Initial release

	Add support for Fernet backend

	Add support for JWT backend

Index

 B
 | D
 | E
 | F
 | G
 | J
 | P
 | V

B

 	
 	Base64Backend (class in falcon_epdb)

D

 	
 	decode_header_value() (falcon_epdb.Base64Backend method)

 	(falcon_epdb.EPDBBackend method)

 	(falcon_epdb.FernetBackend method)

 	(falcon_epdb.JWTBackend method)

E

 	
 	EPDBBackend (class in falcon_epdb)

 	
 	EPDBException

 	EPDBServe (class in falcon_epdb)

F

 	
 	FernetBackend (class in falcon_epdb)

G

 	
 	get_header_data() (falcon_epdb.EPDBBackend method)

J

 	
 	JWTBackend (class in falcon_epdb)

P

 	
 	process_request() (falcon_epdb.EPDBServe method)

V

 	
 	validate_header_content() (falcon_epdb.EPDBBackend static method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 <no title>

 		
 Usage

 		
 Installation

 		
 Usage

 		
 Configuring the middleware

 		
 Constructing the X-EPDB header

 		
 Connecting the client

 		
 Backends

 		
 Troubleshooting

 		
 API

 		
 Middleware

 		
 EPDBServe

 		
 Backends

 		
 Base64Backend

 		
 FernetBackend

 		
 JWTBackend

 		
 EPDBBackend

 		
 Exceptions

 		
 EPDBException

 		
 Development

 		
 Style checks and testing

 		
 Style

 		
 Adding dependencies

 		
 Publishing a new release

 		
 Changelog

 		
 v1.1.0

 		
 Cleanup and more tooling

 		
 v1.0.0

 		
 Initial release

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

